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Soft X-ray tomography (SXT) is a powerful imaging technique that generates quantitative, 3D images of
the structural organization of whole cells in a near-native state. SXT is also a high-throughput imaging
technique. At the National Center for X-ray Tomography (NCXT), specimen preparation and image collec-
tion for tomographic reconstruction of a whole cell require only minutes. Aligning and reconstructing the
data, however, take significantly longer. Here we describe a new component of the high throughput com-
putational pipeline used for processing data at the NCXT. We have developed a new method for auto-
matic alignment of projection images that does not require fiducial markers or manual interaction
with the software. This method has been optimized for SXT data sets, which routinely involve full rota-
tion of the specimen. This software gives users of the NCXT SXT instrument a new capability – virtually
real-time initial 3D results during an imaging experiment, which can later be further refined. The new
code, Automatic Reconstruction 3D (AREC3D), is also fast, reliable, and robust. The fundamental architec-
ture of the code is also adaptable to high performance GPU processing, which enables significant
improvements in speed and fidelity.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Soft X-ray tomography (SXT) is the only imaging technique
that generates high-resolution, 3D views of cellular structures in
large (up to 15 lm diameter), intact eukaryotic cells in the
near-native state. Because SXT is conducted in the ‘water win-
dow’, the region of the spectrum where carbon and nitrogen ab-
sorb an order of magnitude more than water, it is particularly
sensitive to the distribution of organic molecules in a cell.
Absorption of photons at this wavelength adheres to Beer–
Lambert’s law and is therefore linear with thickness (Attwood,
1999). Consequently SXT images are uniquely quantitative, and
each organelle is seen based on its organic composition, which
gives it an unique linear absorption coefficient (LAC) measure-
ment (Le Gros et al., 2005; Weiss et al., 2000). The difference in
the LAC values of cellular components yields high-contrast
images without the need for any chemical stains.

Cells imaged with SXT are typically between 1–15 lm in
diameter, and each image shows all internal organelles superim-
posed in a 2D projection image. Tomographic reconstruction
methods make it possible to retrieve that information and
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generate 3D views that reveal the spatial distribution of the
organelles. It is well known that the optimal 3D reconstruction
is achieved when images are taken at multiple intervals through
180�. With electron tomography, the combination of thin, planar
specimens and the mechanical constraints of the specimen hold-
ers for these samples limits the ability to acquire images at all an-
gles, and the quality of the reconstruction is compromised.
Algorithms have been devised to minimize the artifacts in the
reconstruction, but it is still not possible to obtain isotropic reso-
lution. SXT can circumvent this problem by imaging cells in thin-
walled (200 nm thin) capillary tubes. Images of cells in a capillary
can be collected through an angular range of 180�, or even 360�
to more evenly distribute the X-ray dose. As a consequence there
is no wedge of missing information and, due to the incoherent
bright field imaging geometry (Streibl, 1985), fully isotropic reso-
lution can be achieved in the reconstructions. Full-rotation imag-
ing has been used very successfully with SXT to generate 3D
images of a wide variety of cell types with isotropic resolution
(Carrascosa et al., 2009; Le Gros et al., 2005; McDermott et al.,
2009; Meyer-Ilse et al., 2001; Schneider et al., 2010; Uchida
et al., 2009, 2011).

The first step in processing data for high-resolution tomogra-
phy involves the alignment of the projection images taken at dif-
ferent angles to a common axis of rotation. This is especially
important for high-resolution techniques like electron tomography
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and SXT where the precision of the rotation axis and overall accu-
racy and stability of the specimen stage are at, or just below, that
required by the limiting resolution of the imaging technique. Cur-
rently, the ‘‘gold standard’’ that gives the best possible alignment
of soft X-ray tomography data is alignment based on fiducial
markers. Experimentally, gold nanoparticles are added directly to
the sample, or to the sample container. Each nanoparticle is a fidu-
cial marker that can be tracked through the series of projection
images. By tracking multiple markers, all of the images can be
aligned to a common frame of reference with an error of one pixel
or less (Kremer et al., 1996). Alignment of fiducial markers can be
done manually, but this is a very time consuming and labor inten-
sive process. Since SXT can image large numbers of cells in a rela-
tively short period of time (Uchida et al., 2009), there is an obvious
need to automate the alignment process.

There are many approaches to automating the tracking of fidu-
cial markers through a stack of projection images, including IMOD
(Kremer et al., 1996) XMIPP (Sorzano et al., 2004) and others
(Amat et al., 2008; Chen et al., 1996; Liu et al., 1995; Zheng
et al., 2007); for review, see Brandt (2006) and (Frank, 2006;
Houben and Bar Sadan, 2011). Most of these programs have been
developed to process data for electron tomography, which exam-
ines specimens that must be less than 1 lm along the optical axis
of the microscope. These automated programs have not been as
successful aligning images for X-ray tomography, which examines
large cylindrical specimens (frequently up to 15 lm thick) filled
with numerous high contrast structures. With SXT there is signif-
icantly less difference between the contrast levels of the gold
markers and cellular structures, which makes it difficult to follow
the markers through the full rotation.

The simplest automated alignment approach is the cross-cor-
relation approach, in which appropriate transforms between
images are calculated pairwise for images in the projection stack
(Kremer et al., 1996). A second approach is feature-based align-
ment. In this method, rather than relying on gold nanoparticles
as fiducial markers, feature points (such as Harris corners (Harris
and Stephens, 1988)) are extracted from the images themselves,
and these are used as the fiducial markers that are tracked across
the image stack (Castano-Diez et al., 2010, 2008b; Sorzano et al.,
2009; Winkler and Taylor, 2006). A third approach is known as a
3D model-based method, in which an initial alignment is used to
generate a tomographic reconstruction, and the projections are
iteratively aligned to this volume and then used to generate a
new refined volume (Amat et al., 2010). An excellent example
of this approach is described in (Yang et al., 2005). This approach
can yield excellent results, though it is computationally intensive,
and the initial coarse alignment must be relatively good in order
to yield the global minimum. After exploring these three ap-
proaches to SXT data alignment, we found that model-based
alignment produced the best results with SXT data. Much of the
model-based software that has been developed for electron
tomography, however, is targeted at single-particle cryoelectron
microscopy, which involves a large number of projections (often
many 1000s), each of which is relatively small (below 100^2 pix-
els); thus, the available software has imposed limits on the size of
images in terms of required computer memory. With SXT, we use
fewer projection images (between 90 and 360), with each image
being much larger (either 1024^2 or 2048^2). To obtain an opti-
mal solution for aligning SXT data, we developed model-based
alignment software uniquely suited for X-ray images. The result-
ing software package, Automatic Reconstruction 3D (AREC3D), is
central to the data processing pipeline used at the NCXT. The
source code for AREC3D is available at https://codeforge.lbl.gov/
projects/arec3d. In this manuscript we describe the AREC3D
methodology and present examples of aligned SXT data sets.
2. Results

Data processing programs operate on the assumption that the
axis of rotation lies vertically. Since the long, thin custom-made
glass capillary specimen holders used for SXT are not perfectly
cylindrical, this is not always the case. Consequently there can be
a small angle between the real axis of rotation (y) and the vertical
axis of the CCD chip (Y), as diagramed in Fig. 1. Additional imper-
fections in the rotation and translation stages cause additional
movements of the specimen, which are not in accord with the
model implicit in a standard tomographic reconstruction proce-
dure. Fig. 2 shows the first and last images from an unaligned ser-
ies of projection images collected through 180�. Strictly speaking
the alignment correction can only be computed in a complete 3D
space. However, given the geometry of our specimen holders,
angular changes are relatively small, and good alignment and
reconstruction results can be achieved by limiting alignment
parameters to translations and one rotation in the plane of the pro-
jection images. With this approach we are taking into account dif-
ferences between the angle of rotation and the vertical direction in
the plane of imaging; components outside of this plane are ig-
nored. As a result an independent tomographic reconstruction
can be implemented in slices along the rotation axis (Castano-Diez
et al., 2006; Fernandez, 2008; Mastronarde, 2008). Fig. 3 shows a
comparison of digital orthoslices through a tomographic recon-
struction of a yeast cell where the projections were aligned by
translation cross-correlation and manual fiducial alignment. It is
clear that the cross-correlation alignment is not sufficient in this
case to give useful results. The main issue with this method by it-
self is that it is not robust and it produces inconsistent results fre-
quently failing to produce an useable reconstructed SXT data set.

2.1. Alignment strategy

To discuss our alignment strategy, we first look at the geometric
relationship between the 3D object to be reconstructed and its 2D
projection images. During the image acquisition process, the sam-
ple is placed in a roughly cylindrical capillary tube that is rotated
around an axis (y) through an angle, xi. The axis of rotation may
not be in the center of the cylindrical tube. Furthermore, the axis
of rotation may not be parallel to the Y-axis (the vertical axis of
the CCD camera, which is the vertical axis of the projection
images), and the angle between the true axis of rotation (y) and
the Y-axis may change as the tube is rotated due to stage imperfec-
tions. In addition to a tilt of the axis, stage drift may also produce
horizontal and vertical shifts. The lack of a priori knowledge about
the location of the rotation axis and the additional orientation
changes due to the vibration of the stage makes the alignment
and reconstruction problem a nontrivial task. The alignment strat-
egy we developed aims to detect the inconsistency among different
projection images and correct for the misalignment introduced by
the systematic experimental errors.

If we assume the noise in the image is moderate, and can be de-
scribed by a Gaussian distribution with zero mean, the alignment
and reconstruction problem can be formulated as a nonlinear least
squares problem of the form

min
f;fwj ;/j ;sjg

Xm

j¼1

jjPðwj;/j; sjÞf � bjjj2; ð1Þ

where f is the 3D object to be reconstructed, (wj, Uj) are two of the
Euler angles that describe the orientation of the 3D object that
yields the jth projection image bj. The projection image can be
viewed simply as the a 2D image formed by applying a line integral
operator P to the 3D object along a prescribed direction after the 3D
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Fig.2. Projection images of a capillary filled with S. cerevisiae yeast cells. The images
were taken at 0� and 180�. The angular deviation of the experimental rotation axis
(y) can be estimated by measuring the angle between the tube edges and Y-axis,
with b1 the angle for the 0-degree projection and b2 the 180-degree projection. The
tube wall is coated with gold markers used as fiducial markers for manual
alignment. Scale bar = 1 lm.

Fig.3. Digital orthoslices through tomographic reconstructions of a yeast cell where
projections were aligned by cross-correlation (left) and manual fiducial alignment
(right). Orthoslices shown were from different positions along the tube axis.
Distortions are clearly visible in the images aligned by cross-correlation shown on
the left. Scale bar 1 lm. Ice crystals seen on the surface of the tube are from
contamination during specimen transfer to the X-ray microscope; they do not
interfere with imaging due to the highly penetrating nature of X-rays at the imaging
energy.

Fig.1. Simplified diagram illustrating an example of a rotational error that occurs
during collection of images for a tomographic data set. The experimental rotational
axis (y) is offset from the assumed reconstruction axis (Y) by angle a, xi is the angle
of the ith projection image. The X and Y axes are parallel to the CCD pixel rows and
columns, respectively. Additional misalignments can occur due to other rotation
and translation stage errors.
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object has been rotated by (wj, Uj), and translated by sj (Yang et al.,
2005). The azimuthal rotation angles are assumed to be known ex-
actly, and for the single tilt-axis geometry the remaining Euler an-
gles represent an in-plane rotation.

The optimization problem defined in (1) is generally difficult to
solve due to the nonlinear coupling between the unknown 3D ob-
ject and the orientation parameters wj and Uj. One way to solve the
problem, which is widely used in the cryoEM community, is to per-
form what is called a projection matching (Penczek et al., 1994).
The projection matching algorithm can be viewed as a generalized
coordinate descent algorithm. It requires an initial guess of the 3D
object f (or the Euler angles wj and Uj) f0 and consists of the follow-
ing two steps:

When f0 is available, an exhaustive search of the optimal orien-
tation parameters wj and Uj is performed, i.e., we first solve

min
fwj ;/j ;sjg

Xm

j¼1

jjPðwj;/j; sjÞf0 � bjjj2 ð2Þ

Once an optimal set of wj and Uj are determined, we can solve a
linear least square problem by using a standard tomographic
reconstruction algorithm, i.e., we solve

min
f

Xm

j¼1

jjPðwj;/j; sjÞf � bjjj2 ð3Þ

One of the key factors that affect the convergence of the projec-
tion matching algorithm is the availability of a good initial guess f0.
For cryoEM image reconstruction, obtaining a good initial guess is
generally a difficult task because the geometric relationship be-
tween the 3D object and 2D projection images is largely unknown
a priori. However, for X-ray cell imaging, we have a better knowl-
edge of the relationship between the projection image and the ob-
ject even though we do not have the precise values of some of the
orientation and translational parameters. In particular, the azi-
muthal rotation angles are known exactly, and in practice we have
at least 91 images cover 180� viewing angles in 2-degree
increments. In addition, the presence of the capillary tube edges
in the projection images enables us to perform an initial alignment
to fix the axis of rotation and obtain an initial estimate of the direc-
tion of the rotation axis relative to the y-axis.



Fig.4. An overview of the methodology we use for automatic alignment of
projections prior to soft X-ray tomographic reconstruction. First, each image in
the projection stack is aligned to the projection images from adjacent angles by
cross correlation. This allows the construction of a coarsely aligned projection
image stack by applying transforms to the original images. Second, the position of
the center of rotation with respect to the images is determined and a global in-
plane rotation is determined. Third, an initial tomographic reconstruction is
generated. Fourth, at each angle at which a projection image was collected in the
original data set, a re-projection is generated from the reconstructed 3D model
volume. Fifth, these re-projections are compared with the original projection
images, and the transform needed to align each original projection to the re-
projection from the model at that angle is refined. Finally, steps three through five
are repeated iteratively; with each iteration, the reconstructed volume improves as
the alignment errors decrease.
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To identify the angle between the actual rotation axis and the Y-
axis, we first identify the tube edges associated with the 1st and
the 91st images by using standard edge detection techniques.
Without loss of generality, we can assume the azimuthal rotation
angles associated with these two images are 0� and 180�. From
the slope of these edges, we can calculate the angles between the
tube edges and the Y-axis. If we denote the angle between the tube
edges of the first image and the Y-axis by b1, and that associated
with the 91st image by b2, and if we ignore additional rotation
introduced by stage imperfections, then the angle a between the
rotation axis and the Y-axis should be a = (b1 + b2)/2 (see Fig. 2).

By rotating each image by a�, we effectively make the axis of
rotation parallel to the Y-axis. However, the axis rotation does
not necessarily pass the origin of the 3D coordinate space, nor does
it have to be in the center of the tube. Although the quality of the
3D reconstruction does not depend on the exact location of the axis
of rotation, computational efficiency can be gained if we choose the
axis of rotation to go through the center of the tube. In this case,
total size of the reconstruction volume is roughly the size of the
cylindrical tube with little extra void space outside of the tube.

To correct for translational movement of the rotation axis
resulting from the vibration of the stage, we perform a successive
translational alignment between the ith and the i + 1st images for
i = 1,2, . . .,90 using cross correlation. Such an alignment procedure
eliminates most of the translational movement that depends on
the azimuthal rotation angle h. To account for a potentially global
(angular independent) horizontal drift of each projection image by
an unknown constant number of pixels D, we flip the 91st image in
the horizontal direction and cross correlate the flipped image with
the first image. Because the x-coordinate of each pixel in the 1st
and the 91st images can be represented by

x0 ¼ ðx� x0Þcos0þ ðy� y0Þsin0þ D ¼ x� x0 þ D; ð4Þ

and

x00 ¼ ðx� x0Þcospþ ðy� y0Þsinpþ D ¼ �xþ x0 þ D; ð5Þ

respectively, where (x0, y0) is the unknown (x, y) location of the
rotation axis, the position of cross correlation peak yields 2D, which
allows us to deduce the constant drift and shift each image by �D
pixels to correct for such a drift. A similar correction can be made
for a vertical drift also.

After the initial alignment steps described above have been per-
formed, we crop each projection image to keep the projection of
the sample and the capillary tube in the image. We then choose
the axis of rotation to be in center of the cropped image and per-
form an initial 3D tomographic reconstruction. Because the axis
of rotation is fixed, the 3D reconstruction can be reduced to ny

2D reconstructions, were ny is the number of (x, z) slices in the y-
direction. A number of algorithms can be used to perform the
reconstruction task. We use the conjugate gradient (CG) algorithm
because it produces a high quality reconstruction, is efficient and
relatively easy to parallelize on a distributed-memory cluster. Typ-
ically, 15 or fewer CG iterations are sufficient to produce a 3D
reconstruction with desired resolution. Running too many CG iter-
ations may amplify undesirable noise in the data. The iteration
number can be viewed as a regularization parameter for the CG
based iterative reconstruction algorithm (Hansen, 1998).

The additional azimuthal angular dependent in-plane rotations
of the projection images introduced by imperfections in the stage
are corrected in a simplified projection matching procedure that
follows the initial alignment. In this simplified projection, we gen-
erate a set of reference projections from a 3D model constructed in
the previous iteration computationally. Both translation and rota-
tional cross-correlations are performed between each reference
projection image and the corresponding experimental image (after
it is properly cropped). The translational shifts and in-plane
rotation angles are used to transform each experimental image be-
fore the transformed images are cropped and used to produce a
new 3D reconstruction. This procedure is repeated until the
changes in shifts and angles fall below a chosen threshold. The
flowchart in Fig. 4 gives a summary of our alignment procedure.

In implementing the code, we focused on MPI (message passing
interface) parallelization for distributed memory clusters that have
a limited amount of local memory (Pacheco, 2011). Although our
parallelization tends to significantly reduce the required time for
the reconstruction and alignment process, our main focus in the
distributed-memory parallel implementation is to address the
memory-limitation problem. The alignment and reconstruction
procedure described above requires two different types of data dis-
tribution schemes that are currently coordinated through disk I/O.
For the initial alignment, it is natural to distribute experimental
images among different processing units. Each processing unit con-
tains a fixed number of images. Successive translational alignment
is performed simultaneously on local images assigned to individual
processors. The aligned images are written to the disk as a single



Fig.5. Orthoslices through the reconstructions of both the phantom (A) and the soft
X-ray tomography data (B), using both automatic alignment (top) and manual
alignment method (bottom). Slices were taken at different positions along the tube
axis. Scale bar = 1 lm.
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image stack, which requires synchronization. When the image
stack containing the aligned images is read into the memory again
for reconstruction, each image is partitioned evenly along the y
direction, and each processing unit receives m sub-images that it
can use to reconstruction a portion of the 3D object.

In the simplified projection matching procedure, reference sub-
images are generated from a partial 3D volume produced from the
previous iteration, the reference sub-images are merged when they
are written to the disk as a single file. The merged reference images
are read back from the disk and redistributed among different pro-
cessors on an image-by-image basis so that the cross-correlation
between the reference projection and experimental images can
be performed in parallel.

To characterize the performance of AREC3D, we measured wall
clock time while running it with different numbers of processors
for a data set with 91 projections that was originally
1024 � 1024 pixels, then cropped to 500 � 800 pixels. For 1, 2, 4,
8, 16, 32, 64, and 128 processors, the time to complete one itera-
tion was 1600, 800, 410, 225, 120, 72, 56, and 35 seconds. As the
number of processors increases, it becomes difficult to divide 91
images evenly among processors. In addition, I/O overhead means
that the scaling is not perfectly linear.

Although our current parallelization scheme incurs some I/O
overhead, the overhead is moderate. Even though the total amount
of memory for the latest machines tends to increase, memory per
processing unit remains the same, and is projected to decrease in
the future. Therefore, we decided to perform I/O in this version
of the code to make it more flexible. We are also developing a
shared-memory parallel version of the code that can be used on
a multi- and many-core mode with a large amount of shared mem-
ory using OpenMP. The OpenMP version does not use any I/O other
than reading the 2D images and writing out the reconstructed 3D
reconstruction. This version will be modified to run on a GPU using
CUDA. In addition, we plan to develop a hybrid MPI and OpenMP
parallel version of the code that can be used on multi- and
many-core clusters (Agulleiro and Fernandez, 2011; Castano-Diez
et al., 2008a; Xu et al., 2010).

2.2. Testing and validation

In this section we present results on the testing and validation
of our method using two data sets: an artificially generated phan-
tom, and a representative SXT data set. The test phantom was gen-
erated using a combination of Matlab scripts and functions from a
freely available image reconstruction toolbox (Fessler, 1995, 2009).
The 3D phantom is modeled as a water-filled glass tube in which
there is an ellipsoidal cell that contains one high-contrast and
one low-contrast internal organelle. Nanoparticles attached to
the outside wall of the tube were built into the model for use in
manual alignment procedures. The soft X-ray absorption charac-
teristics of the objects in the phantom were chosen to match those
obtained from SXT measurements of real cells. The axis of the cap-
illary was chosen to lie imprecisely along the y-axis of the volume.
Projections were generated from this noiseless phantom at 2�
increments over 180�. We then added noise to the projections
based on actual noise characteristics measured using the NCXT soft
X-ray microscope, XM2. In addition, we added random in-plane
rotations to the phantom projection data. This set of projections
was used as the input for both the automatic alignment software
as well as for a manual alignment based on the included fiducial
markers.

To test real SXT data, we used a set of projection images with
fiducial markers. These data served as the input for both automatic
alignment and manual alignment based on fiducial markers. We
evaluated the quality of the aligned data using visual inspection
of the digital orthoslices through the reconstructed volume. A
quantitative comparison was obtained using a Fourier Ring Corre-
lation (FRC) calculation using the ‘‘noise-compensated leave one
out’’ (NLOO) method of Cardone et al. (2005). This method works
best for data comprised of a limited number of projection images,
and in our experience this measurement has been more robust and
informative than other FRC methods.

Fig. 5 shows one-pixel-thick orthoslices through the reconstruc-
tions of both the phantom and the real SXT data set. We aligned the
data using both manually selected fiducial markers and the
AREC3D software. For the AREC3D alignment results we used 100
iterations of projection matching. Because of the cylindrical geom-
etry of our specimens we have an excellent way to visually mea-
sure the quality of an aligned data set. When viewed along the
tube axis, a well-aligned data set should provide a reconstruction
of the capillary tube wall, which is circular; a poor alignment
makes the tube non-circular, and in some cases completely discon-
tinuous (compare to the results shown in Fig. 3). The manual and
AREC3D aligned data sets as shown in Fig. 5 yield nearly identical
results, and in both cases yield a nearly circular tube. A comparison
of features in identical reconstructed slices obtained by each meth-
od through the volume is difficult because, as will be discussed be-
low, the biggest difference between the manual and automatic
alignment is the in-plane rotation correction of the images. This
means that a reconstruction based on AREC3D is at a slightly differ-
ent orientation to that obtained from manual alignment. Visual
inspection indicates that the reconstruction quality, although very
similar, is marginally better for the manual alignment.

To quantitate the difference between the alignment correction
obtained using manual fiducial marker location and AREC3D, we
have plotted the x and y position and in-plane rotation alignment
corrections as a function of projection angle for both manual and
AREC3D alignment of the SXT data set (Fig. 6). The two methods



Fig.6. Graph of the x and y-shifts and in-plane rotations as a function of projection angle for soft X-ray tomography data (left) and the difference between each alignment
parameter as determined by manual fiducial alignment or AREC3D automatic alignment (right).
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give an equivalent alignment correction for the phantom data set
with 100 iterations used for the AREC3D alignment (data not
shown). Fig. 6 also shows the difference between the x translations
for manual vs. AREC3D alignment, and we find that the difference
follows a sine curve; simply stated these two x alignments yield
essentially identical volumes that are slightly shifted from each
other. We found that this agreement between manual and AREC3D
alignment holds for essentially all data sets tested. We believe this
occurs because we use a cylindrical specimen geometry with a lat-
eral extent less than the field of view of the microscope; and most
data sets contain projection images with high-contrast edge fea-
tures, making the in-plane translational alignment of the data
set in a direction normal to this edge very straight forward.

The differences between manual and AREC3D alignment for y
position and in-plane rotation corrections are more significant.
Although the difference curve follows a sine curve, greater fluctu-
ation is observed. This indicates that an accurate alignment in the
y-direction is more difficult to achieve in the absence of image
features that have a strong contrast jump in the y direction. The
rotation parameter is much smoother in the manual alignment
due to a grouping parameter available in the IMOD software
(Kremer et al., 1996). This parameter forces a smooth transition
of the rotation parameter between projections. We empirically
found that using this grouping parameter produces better recon-
structions. A similar smoothing function will be implemented in
future versions of the AREC3D software. In Fig. 7 we demonstrate
improvements in the reconstruction quality based on the number
of iterations used for projection matching. Distortions can be seen
clearly in the cell walls at the top of the two cells. These disconti-
nuities vanish nearly completely with increased iteration number.
Subcellular organelles, such as the nucleus, nucleolus, vacuoles and
lipid bodies, can be clearly seen in both automatic and manual
alignment.

Finally we compare reconstruction quality in manual alignment
and AREC3D alignment using a noise compensated leave one out
method. In this method, reconstructions are calculated based on
a projection stack with one projection angle missing. An
approximation to the deleted projection is generated from the
reconstructed volume and compared to the original, omitted
projection using standard FRC methods (Saxton and Baumeister,



Fig.7. Orthoslices along the rotation axis through the reconstruction using different numbers of iterations of projection matching. Number of iterations, top: 2, 5, 10, 25 (left
to right); bottom 50, 75, 100 (left to right) and manual alignment (bottom, far right). Scale bar = 1 lm.
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1982). This process is repeated every 10 images and the results are
averaged, as shown in Fig. 8. For the microscope settings used for
data collection in this work (32 nm pixel size), and with a FRC
threshold of 0.5, the resolution obtained for the different recon-
Fig.8. Comparison of Fourier Ring Correlation (FRC) curves calculated with the
leave-on-out method (data has 32 nm pixel size). The dotted line indicates the 0.5
threshold. Manual alignment shows slightly better results than AREC3D automatic
alignment with 100 iterations.
struction methods is 87 nm for the manually aligned data and
94 nm for the AREC3D aligned data. Despite some differences in
the y-shifts and in-plane rotations, the overall quality of the recon-
struction obtained using AREC3D is satisfactory for data analysis
(e.g. segmentation). For analyses requiring the best resolution or
optimized contrast the AREC3D derived alignment parameters
can be used as the initial input to a more thorough analysis proce-
dure. For instance, with human intervention ‘‘bad’’ projections
caused by an uncontrolled seismic noise could be removed from
the data prior to alignment, leading to improvement over auto-
matic procedures.
3. Discussion

Development and implementation of the AREC3D software
package are significant steps forward for high throughput soft X-
ray tomography. Tight integration of automatic alignment and
tomographic reconstruction has enabled investigators using SXT
at the NCXT to obtain almost real-time feedback on the data as it
is being collected using only a few iterations of projection match-
ing in AREC3D. An increased number of iterations can be used for
later refinement. The prompt reconstructions obtained using
AREC3D are invaluable to investigators performing SXT experi-
ments; by using binned images rather than full-resolution images,
reconstructions could be obtained even more quickly. The ability to
obtain high-resolution cellular tomograms while examining a large
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number of cells under different conditions enables intelligent deci-
sion making during the experiment.

In many cases, the volumes obtained after convergence of the
algorithm are sufficient for further processing; in some cases, they
are of sufficient quality to allow selection of a few data sets that
can be reconstructed using fiducial markers to get improved
resolution. SXT image processing will continue to leverage off
state-of-the-art developments in electron tomography, but the un-
ique ability to examine large numbers of cells, and the enormously
relaxed demands on specimen geometry, makes it necessary to
develop new software optimized for SXT.

AREC3D is a small but significant component of an automated
data analysis pipeline for high-throughput SXT. As the number of
biological soft X-ray microscopy facilities increases (Pereiro et al.,
2009), there will be many additional creative contributions to the
portfolio of software tailored to SXT. New software is required
for virtually every aspect of the SXT data processing pipeline, from
the difficult problem of automatic segmentation to data knowledge
bases (DOE, 2010) for archiving and mining the unique data ob-
tained with SXT and with correlated high N.A cryolight fluores-
cence microscopy (McDermott et al., 2009).
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